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The Canchy problem for a first-order partial differential equation whose left-hand side is a homogeneous function of the vector 
of derivatives, with the time derivative occurring additively, is considered. The boundary conditions are specified at the fight 
end of the time interval. The solution of a differential game over a fixed time interval with a terminal functional is reducible to 
a problem of this type. The traditional difference method for constructing the solution of a boundary-value problem is not 
applicable, because the generalized solution need not be smooth. A mathematical technique, based on methods of solving game 
problems, is proposed. The resultant computational scheme, whose validity is established in three theorems, is based on a 
rectangular space mesh aad a subdivision of the time interval. Unlike the classical approach, the scheme uses not finite differences 
but subdifferentials of the convex hulls of functions appro~mating the value function. Copyright O 1996 Elsevier Science Ltd. 

There are several definitions of generalized solutions of the Hamilton-Jacobi equations [1--4] which, 
though different in farm, are essentially equivalent. These definitions are based on replacing the equation 
by a pair of (differential) inequalities. This paper is based on constructions from the theory of positional 
differential games 115, 6], which was developed by N. N. Krasovskii and his coworkers and combines 
methods for solving a broad range of problems--from existence theorems to the design of numerical 
algorithms. It should be noted that research in recent years, carried out using different approaches (see, 
for example, [7-10]), was preceded by work of various authors in the 1950s and 1960s. This paper 
continues the studies in [1--6, 11-18]. 1 

1. FORMULATION OF THE PROBLEM 

Consider the Cauchy problem 

~ v  
I Vw( t ' x )={ , , x l  ( , 'x)  . . . . .  , x ,  -~-: (t,x)+ h(t,x, Vw(t,x))= O a-.~.-w (t,x))) 

w ( O , x ) = o ( x ) ,  tE[0,0), x ~ R  ~ 
(1.1) 

where h(t, x, s) is the Hamiltonian. 
The problem of approximating a generalized (min-max, viscosity) solution of problem (I.1) will be 

studied in the context of the differential game (DG) 

k = f ( t ,  x, u,u ) =- f l  (t, X, U) + f2  (t, X, O ) (1.2) 

t¢[0,O], u ~ P c R  p. u ~ Q c R  q 

where x is the n-dimensional phase vector of the system, u and v are the vectors of controls of the first 
and second players, respectively, andP and Q are compact sets. The Hamiltonian of the dynamical system 
is 

h(t, x, s)  = rain ( s, f l  (t, x,  u) ) + max  ( s, f 2  (t, x,u ) ) 
l e P  u~O 

where (s , f )  is the inner product of the vectors s andf. 
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The right-hand side of system (1.2) satisfies the conditions for the existence, uniqueness and extendi- 
bility of a solution. As the performance index of the DG we consider the terminal functional 

~x(.)) = o(x(O)) (1.3) 

where o(-): R ~ =~ R is a function satisfying a local Lipschitz condition. The functional y associates with the 
actually realized motionx(.) = {x(t), 0 ~< t ~ O} of system (1.2) a number o(x(O)) the payoffof the DG. 

With the above conditions imposed on the right-hand side of system (1.2), a value function (t, x) 
w(t,x): [0, O] x R a ~ R of the DG (1.2), (1.3) exists, which is a generalized solution of problem (1.1). 
The value function is the only function which, given the payoff (1.3), simultaneously satisfies the u- and 
v-stability properties. The property of u-stability (v-stability) means that the epigraph (hypograph) of 
the value function is weakly invariant under a certain family of differential inclusions--the family of 
characteristic inclusions for (1.1). Weakly invariant sets may be constructed using a stable absorption 
operator (SAO) [14]. It should be noted here that there is some arbitrariness in the choice of the family 
of characteristic inclusions, which will be used later in constructing the SAO. 

The technique presented in this paper assumes the construction of the restriction of the function w 
to a bounded set D C [0, O] x R". This set will be chosen as a stable bridge in the conflict problem of 
approach described by Eq. (1.2), with a set 

= O(~, ~) = {x ~ R": II x -  ~ II ~ ~} 

defined as a sphere of radius ? with centre at a certain arbitrary point 2, where F is a sufficiently large 
positive number. 

Defin/t/on 1. A multivalued mapping 

t ~ O(t) C R", t e [0, O] 

is called a stable bridge in problem (1.2), (1.3) ifD(O) C ~/, while its graph {(t,x) ¢ R xR~: t ~ [0, 0], 
x e D(t)} is dosed and weakly invariant under the differential inclusions 

:c ~ F(t, x, s) for any s ~ S~ 

FCt, x ,s)  = { f  ~ F: ( s , / )  >~ h(t,x,s)}, F = {f ~ R": II f II ~ K} 

where S, = {s ~ R~: II s II = 1 } is the unit sphere and the constant K is chosen so that 

X > 2  sup.  I I f ( t ,x ,u ,v) l l  (1.4) 
(t,x,u.u )~DxPxO 

with ~ a bounded set in [0, O] × R ~, containing D. 
Note that under the above restrictions on the right-hand side of Eq. (1.2), the family of multivalued 

mappings generating D satisfies the following conditions 

{(t, x) =¢ F(t, x, s): s ~ S.} (1.5) 

,~d. For any (t, x, s) e ~ x S,, the set F(t, x, s) is convex, closed and satisfies the embedding relation 

F(t, x, s) C F. 
hi2. For any (t,x, s) ~ B × S~ 

max min (s,f)=h(t,x,s). 
q~S m feF(t,x,q) 

/~d. Given the mapping (t,x, s) ~ F(t,x, s), a function <S =+ ~(8): R ~ R(~ (6) ~ 0 exists (as 6 ~ 0) 
such that 

dist(F(h ,x,s), F(t2,y,s)) <~ (0(I t I - t 2 1 + ]] x - y ll) 

for all (q, x) and (t2,y) in D and any s in S., where dist(Ft,/72) is the Hausdorff distance between sets 
FI and F2. 
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,~,4. A number ~,~ ~ [0, +**), exists such that, for any (t, x) and (t, y) ~ ~ and any s ~ Sn 

dist(F(t, x, s), F(t, y, s)) ~ k F II x - y II 

One more fact needs to be mentioned. A continuous function w(-) is a value function for the DG 
(1.2), (1.3) if and ordy if the set W = epi w (W = hypo w) is a stable bridge in the problem of approach 
with target set M = e p i c  (M = hypo ¢~) being solved by the player implementing the control u (the 
control v), for the extended system 

Yc = f(t, x, u,v ), X = 0 (1.6) 

Here epi o and hypo o are the epigraph and hypograph, respectively, of the function o, X ~ R. 
It is obvious that ~:his statement remains true when one considers the restriction of w to a stable 

bridge D 

w(.): D ~ R 

In what follows, we shall refer to the problem of constructing the epigraph of the restriction to D of 
w as Problem 1, and to that of constructing the hypograph of the restriction of w as Problem 2. As the 
solutions of these two problems are approached in similar ways, we shall only describe the construction 
for one of them, say Problem 1. 

2. FAMILY OF FORMS OF A STABLE A B S O R P T I O N  O P E R A T O R  
FOR THE E X T E N D E D  SYSTEM 

In this section we shall propose correct forms of SAOs for constructing the set W--the epigraph of 
the restriction to D of the value function of the DG (1.2), (1.3); by "correct" here we mean "compatible 
with the theorems of the theory of DGs". We will consider a collection of families of multivalued 
mappings and investigate the properties of the families. It will be shown that each representative of 
the collection induo~s a SAO. This will enable us to pick out a set of forms of SAOs, each of which 
solves Problem 1. 

We introduce the following notation 

z=(x ,x ) ,  x ~  R", x e R 

] ( t , z , u ,u )=( f ( t , x , u ,o ) ,O) ,  f ( t , x , u , v ) ~ R  n, O ~ R  

If f~ c R ~ x R, then pr fl denotes the orthogonal projection of ~ onto R". 
Let us consider a DG for the extended dynamical system (1.6) 

~=]:( t ,z ,u ,v) ,  z ~ R  "+l, t~[0,O], u e P ,  v ¢ Q  (2.1) 

We will take as the objective set 

M = epi aoco) (2.2) 

i.e. the epigraph of the restriction of the payoff function to the set D(O). 
A stable bridge W for the approach problem (1.2), (1.3) will accomplish the solution of Problem 1. 
The Hamiltonian of system (2.1) is given by 

H ( t , z , l ) = m i n m a x ( l , . f ( t , z , u , o ) ) ,  l ~ R  n+l 
u~l,  v ~Q 

The symbol Sn+l will denote the set of vectors {1 ~ Rn+l: IIl II 1}. 
Construct the direct product of the sets F and the interval [-c, c] 

F c = F x I--c, c], c ~ [0, 4-**) 

Define in (t, z)-space a domain D* that contains W a priori: D* = /~  x R. 
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Let us consider a collection of  families of multivalued mappings, parametrized by the values of c 
[0, +**) 

{(t, z) =# F c (t, z,/): l • S.+t} (2.3) 

( t , z ) e O ' ,  F ~ ( t , z , t ) = { j e F ~ :  (l,])>--- H(t ,z , l)}  

If the family of  mappings (1.5) satisfies conditions hd-.~4, then any family of mappings in the collection 
(2.3) will satisfy analogous conditions, namely, the following conditions A1-A4. 

A1. For any c />  0 and any (t, z , / )  ~ D* x S.+I, the set U(t ,  z, l) is convex, closed and satisfies the 
embedding relation F(t, z, l) C F c. 

A2.  For any c >>- 0 and any (t ,z ,  l) ~ D* ×S.+1 

max min ( l , ] ~ ) = H ( t , z , l ) = h ( t ,  prz, prl) 
q~Sn+l . f~F¢ ( t ,z ,q)  

A3. For any c 1> 0, given the mapping (t, z, 1) ~ FC(t, z, 1), a constant v(c) exists such that 

dist(FC(tl,z,l), F~(t2,z' , t)) <~ v(c)&(I tl - tel + II prz - prz'  II) 

for all (hz) and (t~-') in D* and any I in S,,+1. 
A4. For any c I> 0, a constant 2t = ~(c) e (0, +,o) exists such that, for any (t, z) and (t, z') e D*, and 

any l ~ Sn+1 

dist(F c (t, z,/), F c (t, z', l)) <~ ~. II pr z - pr z' II 

We know [17] that any family of mappings satisfying conditions A1-A4 induces a SAO for the 
corresponding approach problem. In the present case, all such families of  mappings are treated as a 
single collection, each being singled out by the value of the non-negative parameter c. 

Defin///on 2. A stable absorption operator 

c * 7t ( t . , t  , . ) (O<~t .< t*  <~O) 

for problem (2.1), (2.2) is a mapping 

given by the relationship 

B ~ 7tc (t,,t*,B): 2 ~.I ~ 2 ~q 

c * R n + l :  ( t . , t  ,B) ={Z. e B n Z C ( t * ; t , , z . , l ) ~ O  

for all I e an+l, where ZC(t*; t . ,  z . , / )  is the set of all points in R n+l for which, at time t, one obtains 
solutions z(t) ( t .  ~ t ~ t*, z ( t . )  = z. )  of  the differential inclusion 

i. eFC(t ,z , l ) ,  l~Sn+ t 

Definition 3. A set W C D* is called a stable bridge in Problem 1 of approach to a closed target M 
C R n+l is the following conditions hold 

1. W(O) C D. 
2. W(t,) C g ( t , ,  t*, W(t*)) for all t , ,  t*(O <~ t ,  < t* <~ 0). 
Thus, we have described a family B ~ ~e(t , ,  t*, B): 2 R"÷1 =, 2 R"÷' of forms of SAOs, each of  which 

may be included in order to construct epi Wn. 

3. A P P R O X I M A T I O N S  OF A STABLE A B S O R P T I O N  O P E R A T O R  F O R  
T H E  E X T E N D E D  S Y S T E M  

Following the earlier approach [12], we shall define the notion of an approximating form of a stable 
absorption operator for Problem 1. 
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Defm/t/on 4. An approximating form of a stable absorption operator ~c(t , ,  t*, .) (c >~ 0; 0 ~< t .  < t* 
~< O) for Problem 1 its a mapping B =~ ~c(t , ,  t*, B): 2 ~÷t =~ 2 ~÷t given by 

-c • Rn+l. B n ~ C ( t * ; t . , z , ) ~  0 n ( t . , t  , B )  = { z .  • • 

for all 1 • Sn+l}, where Z~ (t*; t . ,  z . )  = z .  + (t* - t . )FC(t . ,  z . , / ) .  
Let F = (0, t , . . . ,  t~ = O} be a partition of  the interval [0, 0]. 
We will now define a system of sets that approximates a maximum stable bridge W in Problem 1. 

Definition 5. An approximating system of sets in Problem 1 is a collection of sets {l~c(ti) C Rn+l: t i 
• F} such that 

$~Ic(ti)=~c(ti,ti+l, Vllc(ti+l)), i = N - I  ..... 0 

where c t> 0 and B~ is a closed E-neighbourhood of the set B 

B t = {b • Rn+l: rain p(a,b) ~ ¢} 
a ¢ B  

p(a ,b ) . - -max{ la  i - b i l :  i = l  ..... n+l} 

The number e(N, c) is found from the recurrent relations 

e(i + 1, c) = Aiv(c)~(A i (1 + K)) + (1 + k Ai )e(i, c) 

A i=ti+ I - t  i, £ ( 0 , c ) = 0  

where K is the constamt in condition (1.4), i~ (-) is the function from condition .~d, Z, = ~ c )  is the constant 
from condition A4, and v(c) is the constant from condition A3. 

We now define the limit of  an approximating system of sets. 
Consider a sequence {Fj:j = 1, 2 , . . .  } of partitions of  the interval [0, O] whose diameters Aj = max/ 

I ti+l - ti I (i = 1 , . . . ,  N ( j )  - 1) tend to zero as j  ---> +~0. 

Defin/t/on 6. Let i ~  denote the set of points (t., z . )  • D* for which a sequence 

{(tj,Zi): tj=tj(t.)•[O,O], Zj• l~ tc ( t j ) ,  lim Zj=Z,}  
j --~ .I. N 

exists, where 

f min t i, t, < 0 
~(t~Er i, t~>~) 

t j ( t ' ) = L t . ,  t, = 0  

The set l ~  will be called the limit of the approximating system {l~j(ti): ti • I)}  a s j  --~ +.0. 

Theorem 1. If the mapping (t, z, 1) ~ FC(t, z,/) (c 1> 0) ((t, z,/) • D* x S,,+0 satisfies conditions A1-A4, 
the set I~ c is the m;Lximum stable bridge W for Problem 1. 

The proof of  Thcx~rem 1 is similar to the proof of the convergence of the constructions of  [12]. 

4. STEP O P E R A T O R  

We will now enu]merate some properties of approximating forms of SAOs over a single step of the 
partition of the time interval. Before we describe them, a few facts should be pointed out. The value 
function of  the DG :is constructed using difference procedures. In our case difference procedures require 
that we know how to find such increments as 8w(t, x)  = w(t + A, x)  - w(t, x), where t e [0, 0), A > 0, t 
+ A • [0, 0], x • D(t)  N D(t  + A), to a satisfactory accuracy. 

Note that not every form 7( (c • [0, +,o)) of a SAO is suitable for that purpose. Thus, a form ~c of 
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a SAO with c = 0 "propagates" its action along the solution levels. This means that, using it °, a 
representation of the value function is formed by constructing its level sets, for which one has to solve 
equations fo ry  of  the form w(t + A,x) - w(t,y) = 0, where w(t + A,x) = const. Below, in particular, 
it will be shown that for sufficiently large values of the parameter c, estimating the rate of change of  
the value function, the corresponding approximating forms of  the SAO enable one approximately to 
compute increments of  the form ~v(t,x). In such situations the forms of the operator act in an equivalent 
manner and permit the use of  locally convex hulls. 

We now define a conical set in (t, x)-space 

"D={(t,x)¢[O,O]xRn: t¢[t0,t~], x¢ (J+( t - t o )F}  

t o = max{0,t~- ~/K}. 

The constructions imply the following properties 
1. D is strongly invariant with respect to the inclusion Jt ~ F; consequently, D C D. 
2. The section D(t) o{~]~ at each time t is a sphere with centre at £ and radius r = r(t) = f - (0  - t)K. 
The constructions described below, which are involved in_the study of properties of the family of  forms 

{~(.),  c ~> 0} of a SAO, are considered "above" the set D. 

Definition 7. Let t e [to, 0), let A > 0 be a number such that (t + A) ~ [to, 0], and let c 1> 0. The step 
operator 1tea(-) is the mapping 2 n.÷~ ~ 2 n~÷l defined by 

g[(B)={z.¢Rn+t: B~2C(t+A;  t ,z , , l )*O VIeS.+I} 

where B C R n+l, ZC(t + A; t, z . ,  1) = z .  + AFC(t, z. ,  1). 
We will now characterize the properties of the step operates 7t~. Throughout, the choice of the 

numbers t and A is governed by the condition t + A ~ d .  
We shall say that a set i2 C/V '+1 is upper stable [19] if the inclusion (x, I~.) e f~ implies the inclusion 

(x, 11,) e ~ ,  where St* > ~t,. 

Property 1. Assume that c e [0, +00), the function q~ is defined and bounded in the set D(t + A). Then 
the set ~a(epi qO is non-empty and upper stable. 

Upper  stable sets generate functions that are defined by applying the operation inf to an appropriate 
set of numbers 

¥~(x) = inf{x:(x, X) e ~, (epi q)), x e D'(t)}, c ~ 0 

Thus, the operators ~ map epigraphs of functions into sets that may be treated as epigraphs of functions. 

Property 2. Assume that c I> 0 and that the function cp is defined and continuous in the set D(t + A). 
Then, for any pointx e D(t), a pointy e O(x, KA) exists such that 

= ¢,(x) 

Property 3. Assume that c I> 0 and that the function (p: D(t + A) ~ R satisfies a Lipschitz condition 
with constant ~. = k(D(t + A)). Then, for any point x ~ D(t) 

] ~(x)-~0(y)l ~ 2kKa rye O(x, Ka) 

We now formulate conditions under which the step operators in the set {u~, c I> 0} act in an equivalent 
manner, in the sense that they generate identically equal functions. 

We recall the definition of the convex hull of a function [20]. 

Definition 8. Let (p be a function defined in the set D(t + A) in R n. Consider the restriction (Po(x, xa) 
of ~0 to the sphere O(x, KA),x ~ D(t). Then co (p will denote the locally convex hull (LCH) of the function 
~Po(x, xA) 

eo~y)=infli~ a'~(Y°)): ai~0, i=l ..... n+l; 



Numerical approximations of generalized solutions of the Hamilton-Jacobi equations 573 

m+l n+l } 
~, ct i = I, x~ a~y(O = y, y(i) ~ O(x, KA) 
i~l i~l 

We emphasize that the I.L-'H of a function ~p depends on two parameters: a point x ~ D(t) and a number 
KA--the radius of st sphere with centre at x. For brevity we have not identified these parameters in the 
notation for LCHs. 

The theorem formulated next uses known corollaries [12] of conditions A1-A4, properties 1-3, the 
d__efmition of LCH and separation theorems from convex analysis. We first define the function ~ ( . ) :  
D(t) =~ R, c >t 0 

~x(x)  = inf{x: (x,X) e 7t~(epi cocPo(~.xA))} 

Theorem 2. If tp: D(t + A) ~ R is a function satisfying a Lipschitz condition with constant L, x ~ D 
(t), then, for any c ~> 2LK and any sufficiently small number A > 0 

x~(epi Cpo(x.Ka )) = n~(epi co~p) = 7t°(epi coop) 

The theorem states, in particular, that for any c >I 2LK 

W~(x)=~(x)=~°(x), x~'~(t) 

5. F O R M U L A E  OF THE D I F F E R E N C E  CALCULUS 

In this section we will translate the preceding description of functions constructed using step operators 
on sections of a strongly invariant set D from set-theoretic language into the language of analytic 
formulae. Thus, with the assumptions of Theorem 2, the functions W~(-): D(t) ~ R are identical. One 
them has the representation 

¥~(x )=max  min coq)(x+Af), x~-D(t), c>~2kK (5.1) 
s~S n .f~F(t,x,s) 

The proof of this equality relies on the definition of step operators, on the families of mappings (1.5) 
and (2.3), and on condition A2. 

We will need some properties of the max-rain of the LCH of a function ~p. For this purpose we define 
sets 

{ t - Fcxt(t,:c)= fext ~ F: max rain cocp(x+Af)=coq)(x+Afext) , ( t ,x)e D 
.~ ,  .f EFO.x , s  ) 

Let K o be a constant such that 

max 
(t.u~)e[q~,OlxPx(2 

II f( t ,x,u,u )U~ K o < K I 2 

Property 4 

Fext(t,x)nO(O, Ko)~O, V(t ,x)~ "D (5.2) 

This relation indicates that the max-min of the LCH of a function cp is attained in the interior of the 
domain of definition of the LCH. Formula (5.2) enables us to derive yet another equivalent 
representation for functions ~1/: a with c I> 2ZakT, and also to establish that the max-rain of the LCH of 
q) is Lipschitz continuous. 

_Property 5. If the function tp(.): D(t) ~ R satisfies the conditions of Theorem 2, the functions W~ (.): 
D(t) ~ R, where c t> 2kK, may be constructed using the formula 

~(x)= max max {Ah(t,x,s)+(s,x-y)+cocp(y)}, x~D(t) (5.3) 
y~O(x,Ktgi) s~aco~(y) 
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where 

co (p(y) = {s ¢ R": co CO(y') - co CO(y) ;n ( s, y" - y ) 

for anyy* in O(x, KA)  is the subdifferential of the LCH of CO defined at a point y, wherey e O(x, KoA ). 
The derivation of formula (5.3) uses techniques from convex analysis, relying on a criterion for a 

convex function to have a minimum subject to convex constraints [19]; it also uses the definition of the 
family (1.5). Note that representation (5.3) may be established using formulae for small displacements 
(see, for example, [16]). 

Property 6. Let the function CO: D ~  + A) ~ R satisfy a Lipschitz condition with constant 7%. Then, 
for any c I> 2Z.q,K, the function ~lfa: D(t)  ~ R satisfies a Lipsehitz condition With constant 7%(1 + A~.~(1 
+ 3/0)  

] ~ ( x )  - ¥ ~ ( y )  I ~< 2L¢(l + A~,F(I + 3K))II x -  y II 

x e D(t), y ~ D(t), and Z,~ is the constant from condition A4. 
Let us consider the function§ generated by thes tep  operators ~ ,  c I> 0. Let F = {to, q , . . . ,  tN = O} 

be a partition of  the interval [to, O], and let cO(.): D(O) =* R satisfy a Lipschitz condition with constant 
7%. Consider the functions corresponding to this partition 

N 
~c(.): I.J (ti,-D(ti))=# R, c >~0 (5.4) 

i=1 

according to the recurrence relations 

qc(O,x)  = 6(x), x e B(O) 

~c(ti,X) = inf{g: (x, Z) c n]j (epi ¥c(ti+l ,. ), 

(A i=l i+l - t  i, i = N - l ,  N - 2  ..... O) 

x ~ "D(t i)} 

We also define the successive max-min operator of  the LCH. To that end we put 

GB(t,A, CO)(x)=max min coCO(x+Af), x e ' D ( t )  
s~S n /~F(t.x.s) 

and let q)(X) denote the set of  all functions considered on a set X. 

Definition9. Let  F = (to, q, .  • . ,  tN = O} be a partition of the interval [to, O] and CO an arbitrary function 
defined on D(O). The successive max-rain operator (SMO) is the operator G(F, CO): O(D(O)) ~ 
(U/N= 1 (ti, D(ti)), ti ~ F defined by the relations 

G(tN,CO)(X )= CO(x), x ~ D(O), G(t i .... ttc,CO)(x) = 

=GB(ti,Ai,GB(ti+I,Ai+I,(...GB(tN_I,AN_I,CO)...)))(X), x~-D(t i ) ,  i = N - 1  ..... 0 (5.5) 

Properties 4-6 imply the following lemma. 

Lemma. Let the function CO: D(O) ~ R satisfy a Lipsehitz condition with constant 7%. Then, for any 
partition F of the interval [to, O] and any values of the parameter c ~> 2 ~ e x p ( k ~ 3 K  + 1)(O - to)), the 
functions (5.4) corresponding to these parameter values are equal to one another and are identical with 
the function generated by the SMO 

¥c( t i , x )=GB( t i ,A i ,GB( t i+I ,A i+I , ( . . .GB( tN_I ,AN_I ,CO) . . . ) ) ) (X  ) x ~ D ( t i ) ,  t i Gl" 

Theorems 1 and 2 and the lemma imply that a SMO approximates the solution of the Cauchy problem 
(1.1), (1.2). 

Theorem 3. Assume that the function o(.): D(O) ~ R satisfies a Lipschitz condition with constant ho, 
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the family of multivalued mappings {(t,x) =¢ F ( t , x ,  s): s e S,,} satisfies conditions ~d-.g,4, and I" = {to, 
tl . . . .  , tN = 0} is a partition of the interval [to, O] such that diam F = maxi {I ti+l - ti l: i = 0, . . . .  N} 
--.> 0 as N- - ,  +oo. 

Then 

[ w ( t i , x ) - G s ( t i , A i , ( . . . G B ( t N _ I , A N _ I , O ) ) . . . ) ( X ) I  --~ 0, x ¢ "D(ti), t i E r  

as diam V ~ 0. 

Remark 1. Similarly; when_solving Problem 2, one constructs a successive rain-max operator, G*(F, 
¢p): O(D(0)) =~ O(U~= t (ti, D(t i)) ,  ti ~ F, defined by 

G*(tN,to)(X) = to(X), x E -D(O) 

G(ti ..... iN, ~p)(x) = G H (t i, A i ,Gbl ( t i+  I , Ai÷ I , ( . . . G  H ( tN_  I , A/V_ I , ~p).. .  ) ) ( x )  

x¢ 'D( t i ) ,  i = N - I  ..... 0 

where 
D 

GH(t,A, to)(x)f ,  min max concto(x+Af), x e D ( t )  
sc~Sn f uF,(t,x,s) 

The family of multivalued mappings {(t, x~ =~ F .  (t, x, s): s e S,,}, where F . ( t ,  x ,  s) = { f  ~ F : ( s ,  f }  <~ 
h( t ,  x ,  s)}, satisfie,.; conditions analogous to A1-~4. The locally concave huh is defined by conc ¢(-) = 

Remark 2. With additional assumptions (see [17, 18]), it can be shown that the operators G and G* 
converge at a rate proportional to the square root of the diameter diam F of F. 

6. T H E  C O M P U T A T I O N  S C H E M E .  E X A M P L E S  

_ The basis of the computation scheme, implemented for the case of two space dimensions, consist of an operator 
D which is a finite-difference analogue of the operator G, considered over a uniform partition V -- {to, q,--. •, tN 
= O} of an interval [to, O] of mesh-size A. The sets D (t/), t~ e I', are considered with rectangular meshes D(tt, a, 
[~) of mesh-size cx > 0 in the variable xl and mesh-size ~ in the variable Xz 

D(t  t ,¢x,~3) = {x(k,d)  F. "D(t i) c R2: x I (k ,d)  = ~l + ¢xk 

k=±l,±2,. . . ;  x2(k ,d)=~c2+~l ,  d = ± l , ± 2  .... } 

The operator 

G(r',to): ~(~(O,a,[3))~/iffi~ I (ti,'D(ti,ct,[$))), t i c V  

is defined by 

G(tN:O)(x)  = tO(x), x E ~(O,a,~) 

~'(ta ..... ts,to)(x) - ~"a (t;, A,~'s (t~.,.~, ,',,(...Gin (tN_~,",to))...))(x) 

Gjl ( t i ,A ,~) (x(k ,d) )= max .max {Ah(t i ,x(k ,d) ,s)+(  s , x ( k , d ) -  y )+ 
yGO(x(k,d),KOA) s,18co~(y) 

+ coto(y)}, x(k ,d)  G "D(ti,a,[3), i = N -  1 ..... 0 

where Gs is a piec~lise-linear approximation of GB. In the event that the Hamiltonian is a pieoewise-linear function 
and the function to is defined on the mesh, the value of the operator GB is computed as a suvcessive maximum 
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Gn(ti,A, qJ)(x(k,d))= max max max {Ahp(ti,x(k,d),s)+ 
x(l.m) p s 

+ ( S, x(k ,  d)  - x ( j ,  m) ) + ecx?(x(j, m))} 

The maximiTation is carried out s u ~ i v e l y  over the pointsx(j, m) • O(x(k, d), AKo; over the numbersp defining 
the "pasting" function hi, (ti, x(k, d), s) = (ti, x(k, d), s), when s lies in the linearity cone Lp(ti, x(k, d)) of the 
Hamiltonian with respect to s; and over the subgradient s of the linearity sets Lt,(ti, x(k, d) x(j, m))  = Lt,(ti, x(k, d)) 
N ~:o ¢(x(/', m)) of the operator G- n with respect to the variable s. 

In numerical simulation, the construction of the convex hull of a function defined only at the nodes of a rectangular 
mesh presents the greatest difficulty. Here we appeal to the "gift-wrapping" algorithm developed for this case. To 
implement this algorithm one constructs a partition of the set of points of the graph of a function, when the latter 
is defined by tabular values, into disjoint subsets which can be convexilied by elementary means (such as the method 
known as "Graham's scan"). The main part of the algorithm is a procedure for constructing the convexification 
of the union of two disjoint convex hulls. The procedure searches for a supporting edge and then implements one 
run of "gift-wrapping'--the successive construction of the facets of the convexitication of the two convex hulls. 
The structure of the representation of the convex hull is a list of edges with dual bonds, which permits a fairly 
simple construction of the subdifferential of the convex hull. The intersections of the subdifferentials with the 
linearity cones of the Hamiltonian are constructed by solving a system of linear inequalities. 

Ernmphr 1. (Test example [13].) Consider the Cauchy problem 

;gw igw I~w I  1:0 
w(2,x )=max{ lx  i l , l x2 l} ,  te[0,2J  

The numerical modelling is carried out at the point £ = (0, 0) at a time t = 0.58578. The point.~ lies on the 
intersection of singular curves of the function w(t, .). We know that w(t, ~) = 0.58578. The parameters of the 
computation scheme and the corresponding approximate values wo of the solution at the point (t,.~) are listed below 

1)A=0.28, a=0 .29 ,  13=0.14, w a=0.68 

2) A=0.14, 0t=0.29, 13=0.14, Wa=0.66 

3) A=0.09, a=0 .24 ,  13=0.09, w a=0.65 

Exa mp/e 2. 
medium 

Consider a mathematical model of the control of the motion of a pendulum in a viscous 

"~'1 = X2,  "~2 = - s i n x l  -ox2 +i) 

where t e [0, 0.075], the "viscosity" is v e [0, 1], the control is such that u • [-1, 1], and the payoff function is o(x) 
- + 

No analytic solution of this problem is known. The results may be compared with those of a computation based 
on a different technique [14], which works by approximating level sets of the solution. Here we list the points (t, 
£') at which the computation was performed, the parameters of the computation scheme and the corresponding 
approximate values wa of the solution, as well as the approximate values ~ obtained by constructing level sets of 
the solution 

1. the point (t ,£) = (0, 0.856, 0.755), for which ~ = 1 

A=0.15 ct=0.2, 13---0.3, Wa= 1.05 

A=0.075, ct=0.15. [$=0.15, wa=l,Ol 

2. the point (t,£') = (0, -1.05586, -0.36266), for which ~ = 1 

A=0.15. ct=0.2, 13=0.3, w a=l ,04  

A=0.075, 0t=0.1, 13=0.15. Wa= 1.01 
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Examp/e 3. Consider the C, auchy problem 

"&-t +smx2 ox, -exp(-x~2 ~x2 J [3x2 
( I 

w<o.s.x)=<x 2 +,~ +0.81) 2 -3 .24x,  2 - i ,  , ~ t o :  0.51 

The exact solution is unknown. As in Example 2, we list the points (t, £ )  at which the computation is carried 
out, the parameters of the computation scheme and the corresponding values w, of the solution, as well as the 
approximate values :~ obtained by constructing level sets of the solution 

1. the point (t, £ )  = (0, -0.551, -0.859), for which ~ = 0 

A=0.05.  ct=0.05, 13=0.1, w a=0.09  

A=0,025. a=0 .025 ,  ~=0,1 .  w a=0.04  

A=0.02,  (z=0.02. 13=0.04, w a=0.03 

2. the point (t, £:m = (0, 1.465, -0.082), for which ~ = 0 

A=0.05,  0t=0.05, [~=0.1, w a=O.14 

A=0,025,  ¢t=0.025, [~=0.05, w a=0,09  

A=0.02,  ct=0.02, [~=0,04, w a=O 

This  research  was car r ied  ou t  wi th  f inancial  suppor t  f rom the  Russian F o u n d a t i o n  for  Basic  Resea rch  
(93-011-16032) and  the In t e rna t i ona l  Science  Fou nda t i on  ( N M E 0 ~ ) .  

R E F E R E N C E S  

1. SUBBOTIN A. I. and SUBBOTINA N. N., Necessary and sufficient conditions for a piecewise-smooth value of a differential 
game./9ok/. AkatL Nauk SSSR 243, 4, 862--865, 1978. 

2. SUBBOTIN A. I., Extension of the fundamental equation of the theoxy of differential games. D o ~  Akad. Nauk SSSR 254, 
2, 293--297, 1980. 

3. CRANDALL M. G. and LIONS E-L., V'Lscosity solutions of HamUton-Jacobi equations. Trans. Ant Math. Soc. 277,1,1--42, 
1983. 

4. SUBBOTIN A. I., Min-Max Inequalities and Hamilton-lacobi Equations. Nauka, Moscow, 1991. 
5. KRASOVSKII N. N. and SUBBOTIN A. I., Pos/tiona/Differential Games. Nauka, Moscow, 1974. 
6. KRASOVSKII N. N., Control of a Dynamical System. Nauka, Moscow, 1985. 
7. SOUGANIDIS E E., Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. Z Differerg Eq. 59, 1, 

1-43, 1985. 
8. BARDI M. and OSHER S., The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations. SIAMJ. 

Numer. Anal. 28, 4, 807-922, 1991. 
9. OSHER S. and SHU C.-W., High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAMJ. Nume,: 

Anal. 28, 4, 80%922, 1991. 
10. MASLOV V. E and SAMBORSKII S. N., Existence and uniqueness of solutions of stationary Hamilton-Jacobi and Bellman 

equations. Dok/. AkacL Nauk SSSR 324, 6, 1143-1148, 1992. 
11. ALEKSEICHIK M. I., Further formalization of the main elements of an antagonistic differential game. Mat. AnaL i yego 

Prilozhen~a (Rostov University, Rostov-on-Don), 7, 191-199, 1975. 
12. USHAKOV V. N., On the problem of constructing stable bridges in a differential pursuit-evasion game. Izv. Akad. Nauk 

SSSR. Tek2m. K/~m. 4, 29-36, 1980. 
13. TARASYEV A. M., On an irregular differential game. Pr/k/. Mat. Mekh. 49, 4, 682-684, 1985. 
14. TARASYEV A. M., USHAKOV V. N. and KHRIPUNOV A. P., On a computation algorithm for solving game problems of 

control. Pr/k/. Mat. Mekh. 51, 2, 216-222, 1987. 
15. TARASYEV A. M., USPENSKII A. A. and USHAKOV V. N., On construction of solving procedures in a linear control 

problem. In IMACS. The Lyapunov Functions Method and Applications, Baltzer, Basel, 111-115, 1990. 
16. TARASYEV A M., USPENSKII A. A. and USHAKOV V. N., A finite-difference method for constructing an optimal 

guaranteed result function. In Gagarin Sciennfic Readings in Space Travel and Aviation. 1991. Nauka, Moscow, 166-172, 
1992. 

17. TARASYEV A. M., Approximation schemes for constructing rain-max solutions of the Hamilton-Jacobi equations. Pr/kL 
Mat. Mekh. 58, 2, 22-36, 1994. 

18. TARASYEV A. M., USPENSKII A. A. and USHAKOV V. N., Approximation schemes and finite-difference operators 
for constructing generalized solutions of the Hamilton-Jacobi equations, lzv. Ross. A/cad. Nauk. Tekhn. K/bern. 3, 173-185, 
1994. 



578 G.V. Papakov et al. 

19. DEM'YENOV V. E and RUBINOV A. M., E/emerita ofNon-nnoofh Ana/y~s and Qua~-d/ffemnt/a/C_.aku/~. Nauka, Moscow, 
1990. 

20. ROC'KAF~-H AR R., ConvexAna/ys/s. Princeton University Press, Princeton, RI, 1970. 
21. PREPARATA E E and SHAMOS M. I., Compumtknm/Gamut.  Springer, New York, 1985. 

T m ~  by D.L 


